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ABSTRACT 

An Extended Kalman Filter is developed to estimate the linearized direct and indirect 

stiffness and damping force coefficients for bearings in rotor–dynamic applications from noisy 

measurements of the shaft displacement in response to imbalance and impact excitation. The 

bearing properties are modeled as stochastic random variables using a Gauss-Markov model. 

Noise terms are introduced into the system model to account for all of the estimation error, 

including modeling errors and uncertainties and the propagation of measurement errors into the 

parameter estimates. The system model contains two user-defined parameters that can be tuned 

to improve the filter’s performance; these parameters correspond to the covariance of the system 

and measurement noise variables. The filter is also strongly influenced by the initial values of the 

states and the error covariance matrix. The filter is demonstrated using numerically simulated 

data for a rotor–bearing system with two identical bearings, which reduces the number of 

unknown linear dynamic coefficients to eight. The filter estimates for the direct damping 

coefficients and all four stiffness coefficients correlated well with actual values, whereas the 

estimates for the cross-coupled damping coefficients were the least accurate. 
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INTRODUCTION 

Compliant surface foil air bearings are self–acting hydrodynamic bearings that support a 

rotating shaft on a thin layer of gas between the shaft surface and a sheet metal foil supported by 

a series of stiff bump foils (See Fig. 1). Advancements in coating materials and methods to 

design the supporting bump foil system have increased the load bearing capacity in gas foil 

bearings (DellaCorte and Valco, 2000) and improved their stiffness and damping properties 

(Salehi et al., 2004) and their ability to operate in high temperature environments (DellaCorte et 

al., 1999; Heshmat et al., 2007). These advancements have made gas foil journal bearings prime 

candidates for implementation in new applications critical to NASA’s mission, such as systems 

to convert nuclear energy to electricity for power generation in space and more efficient, lower 

maintenance propulsion systems for aeronautics. Additionally, gas foil bearings are increasingly 

being considered and used in commercial applications such as microturbine generators and 

industrial blowers.  Coupled with these materials and design advancements is the need for 

experimentally verified tools for predicting steady state performance and rotordynamic 

properties of gas foil bearings. The capability to measure the linearized rotordynamic properties 

of actual gas foil bearings is necessary to validate and calibrate theoretically predictive tools and 

to boost the confidence that high–speed rotordynamic machinery utilizing these components will 

operate effectively and reliably. 

 

Knowledge of the bearing dynamic properties is instrumental in predicting the 

performance characteristics of high speed turbo machinery. As a shortcut to completely 
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modeling the physics of the bearing, the bearings are simply represented by linearized springs 

and dampers, in which case the challenge then becomes to estimate the linearized force 

coefficients for these components. Bearing reaction forces in this form are most convenient for 

analyses involving the whole rotor–bearing system for which each bearing is just one of many 

integrated components. 

 

Several discrete–time domain and frequency domain techniques have been presented in 

the literature for estimating the linearized stiffness and damping (and inertia) coefficients for 

bearings and seals. Tiwari et al. (2004) provides a review of the literature on the topic. Discrete–

time domain methods, which generally utilize least–squares estimators, often suffer from the 

disadvantages that the bearing estimates are biased and highly sensitive to measurement noise 

and errors introduced by transforming the continuous time model into a discrete–time model 

(Sahinkaya and Burrows, 1984). These problems are mostly overcome, resulting in improved 

bearing parameter predictions, by employing estimation methods in the frequency domain. Most 

of the methods discussed in the literature estimate the unknown bearing parameters using motion 

measurements from systems that are excited by some form of known external forcing, e.g., 

shakers or impacts. Experimental systems with the capability for external excitation from shakers 

are costly and generally limited to the laboratory, whereas many rotating machinery in use are 

instrumented with shaft displacement sensors and housing accelerometers for condition 

monitoring purposes. For systems without the capability of external harmonic excitation, 

estimation methods have been developed that rely on imbalance response measurements or the 

response from impact excitation. The system of equations generated by imbalance excitation 

tends to be ill-conditioned, especially if the orbit is near circular (Roberts et al., 1990; Murphy 
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and Wagner, 1991), and the results from these methods often show considerable scatter (Tiwari 

et al., 2004, De Santiago and San Andrés, 2007b). Bearing identification from impact excitation 

has demonstrated promising results (Qiu and Tieu, 1997; Tiwari et al., 2004, De Santiago and 

San Andrés, 2007a). Also, Howard et al. (2001) determined direct bearing dynamic stiffness and 

damping coefficients for a gas foil journal bearing at the system natural frequency by measuring 

the free vertical displacement of the shaft in response to an impact excitation. The system natural 

frequency provided the stiffness estimate, and the damping was estimated from the decay rate.  

 

The objective of this paper is to demonstrate the application of an Extended Kalman 

Filter (EKF) to estimate eight linearized rotordynamic (stiffness and damping) force coefficients 

for bearings from measurements of the system response to imbalance and impact excitation. The 

EKF is a time domain filter that provides an efficient recursive algorithm for estimating states in 

a nonlinear dynamical system from noisy measurements. In this application, the dynamical 

system states to be estimated must include the bearing stiffness and damping properties, which 

results in a system governing equation that is a nonlinear function of the states. As a 

consequence, the estimation algorithm will employ the Extended Kalman Filter instead of the 

traditional Kalman Filter, which is used for linear systems. Fritzen and Seibold (1990) have 

successfully applied the EKF to identify the damping factor and depth parameter for a simple 

rotor with a cracked shaft and the inertia, damping and stiffness coefficients for annular seals in a 

high pressure turbopump test rig. 
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DYNAMIC MODEL OF THE SHAFT AND BEARINGS 

A schematic of the rotor–bearing system is shown in Fig. 2. The shaft layout is chosen to 

match the rotordynamic simulator facility at NASA’s Glenn Research Center shown in Fig. 3 

(Howard, 2007).  In future work, the principles developed in the current paper will be applied 

and compared to experimental data obtained from the rotordynamic simulator facility.  The ratio 

of the shaft radius to length is relatively large, so the rotor is assumed to be rigid. The rotor 

displacement is represented by four coordinates: x1 and y1 correspond, respectively, to horizontal 

and vertical displacements from equilibrium (x10 and y10, respectively) of the shaft at the center 

of the bearing located near the turbine disk, and x2 and y2 are similar shaft displacements from 

equilibrium (x20 and y20, respectively) at the bearing near the thrust bearing plate. The linearized 

bearing model includes only the elastic and dissipative effects; inertial effects are ignored. The x 

and y direction bearing forces (fbx and fby, respectively) on the shaft are 

 . [1] ,

,

1, 2bx i xx xy xx xyi i

by i yx yy yx yyi i

f k k c cx x
i

f k k c cy y
⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫

= − − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦

The bearings are assumed to be identical, so they are modeled with the same rotordynamic 

coefficients, which minimizes the number of parameters to be estimated to a total of eight, four 

direct (kxx, kyy, cxx, and cyy) and four cross–coupled (kxy, kyx, cxy, and cyx) coefficients.  

 

The linearized equations of motion for the shaft can be expressed as 

 ( ) ( )0 t+ + Ω + =Mz C G z Kz F , [2] 

where { }1 1 2 2, , , Tx y x y=z , , and ( ) 00t = =z z ( ) 00t = =z z .  The mass and gyroscopic matrices, 

M and G, respectively, are 
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where L = l1 + l2. Likewise, the stiffness and damping matrices, S and C, respectively, are 
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 The forcing terms in the equations of motion result from the effects of imbalance and 

impact excitation. Imbalances m1r1 and m2r2 are oriented at angles of φ1 and φ2, respectively, in 

planes located at d1 and d2, respectively, from the center of mass. Likewise, an external impact 

force with x and y components, respectively, of fx and fy, acts at a distance of zp from the center of 

mass toward the thrust bearing plate, leading to 
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. [5] 

The values for the imbalance represent both the residual imbalance of the shaft and any applied 

imbalance. The residual imbalance can be measured with a balancing machine, and the applied 

imbalance is assumed to be known. The impact force is also assumed to be known as a function 

of time, which can be achieved if the impact is performed with an instrumented impact hammer. 
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In most situations it is not possible to place the displacement transducers in a location so 

that they measure the shaft motion at the centers of the bearings. In the case when the 

displacement transducers are located at p1 and p2 from the shaft center of mass, see Fig. 2, the 

shaft motion at the bearing centers, denoted by x1, y1, x2, and y2, can be computed from the 

transducer measurements, xp1, yp1, xp2, and yp2, with the following linear transformation, 

 
( ) ( )
( ) ( )

1 12 1 1 11 1

2 22 2 1 22 2

p p

p p

x yp l p lx y
x yp l p lx y

+ −⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦⎣ ⎦

. [6] 

 

For the EKF, the bearing rotordynamic coefficients must be included as states so they can 

be estimated; consequently, the global state vector becomes  

 { } { }, , , ,T T T T T T T
v z≡ =s s s r z z r ,  [7] 

where r contains the rotordynamic coefficients, such that { }, , , , , , ,
T

xx xy yx yy xx xy yx yyc c c c k k k k=r .  

Within the framework of the EKF estimation scheme, all of the variables in the state vector, 

including the rotordynamic properties, will be modeled stochastically. The rotordynamic 

coefficients are assumed to be constant, but, realistically, the estimates will vary with time due to 

some random error within the measurements. The error within the estimates will be 

parameterized by the array of stochastic variables, wr. A first–order Gauss–Markov model for 

the rotordynamic parameters is 

 = rr w . [8] 

The vector wr is assumed to be Gaussian white noise with zero mean and covariance matrix Qr.  

 

Now, the equations of motion are combined with the Gauss–Markov models to form a 

compact, nonlinear system model, 
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Here, wv and wz also represent process noise vectors, assumed to be Gaussian white noise, with 

zero means and covariance matrices Qv and Qz, respectively. The process noise vectors form 

 with a corresponding covariance matrix Q. These noise terms account for all 

of the error within the estimates, including modeling errors and uncertainties and the propagation 

of measurement errors into the estimated values. The system model can be represented as a 

discrete–time equation for discrete time steps tk (k = 0, 1, 2 …) by 

T T T T⎡= ⎣ v z rw w w w ⎤⎦

k

k

  [10] ( )1

1 , , .k

k

t

k k t
f t dt+

+ = + +∫ 0s s s F w

 

Finally, an output vector, yk, is formed from discrete samples of the shaft displacement. 

These measurements will also be contaminated with noise, so the model for the output vector is 

comprised of a linear combination of the true shaft displacement states, szk, and a stochastic 

random noise parameter, vk, to compensate for the measurement noise, such that 

 k k k k= + = +zy s v Hs v , [11] 

where [ ]4 4 4 4 4 8× × ×=H 0 I 0 . The measurement noise parameter, vk, is assumed to be white noise 

with a constant covariance matrix R. 

 

THE EXTENDED KALMAN FILTER (EKF) 
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The EKF is a predictor–corrector type of estimation scheme that provides estimates at 

each time step for the states, ˆ , and the error covariance matrix, ks kP . The error covariance matrix 

is the expected value of the error between the true states and the state estimates. 



The first step in the process to project the state estimate from one time step to the next is 

to predict the projection based solely on the model and the old state estimate, forming 

intermediate predictions of the state and covariance matrix at the new time step. To distinguish 

between predictions and estimates at a time step, predictions of parameters are designated with 

the over-bar symbol and estimates are marked by an over-caret symbol. The state prediction at 

the new time step is computed by solving the original nonlinear governing equation, giving 

 ( )1

1 ˆ ˆ, ,k

k

t

k k t
f t dt+

+ = + ∫ 0s s s F . [12] 

Using the “Continuous-Discrete EKF” formulation for nonlinear systems with discrete 

measurements, as described by Gelb (1974), the error covariance prediction is determined by 

 ( )1

1
ˆ ˆ ˆk

k

t T
k k t

dt+

+ = + + +∫P P AP PA Q . [13] 

The time integrations in Eqs. [12] and [13] are computed using an efficient high–order numerical 

integration scheme. The A matrix in the error covariance prediction represents a linearization of f 

about the current estimate of the state vector, 

 ( )ˆ , ,k k kf t∂
=

∂
0s F

A
s

. [14] 

Initial values for the state vector and error covariance matrix are set to  and 0ŝ 0P , respectively. 

 

The second step is to update the state and error covariance predictions using the 

measurement data,  

 ( )1 1 1 1 1ˆk k k k k+ + + + += + −s s K y Hs  [15] 

and 

 ( )1 1k K 1k+ += −P I K H P + . [16] 
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The term Kk+1 is known as the Kalman gain factor. The following formulation for the Kalman 

gain factor blends the state estimates with the measured data in a manner that minimizes the error 

covariance (Friedland, 1986), 

 ( ) 1

1 1 1
T T

k k k

−

+ + +=K P H HP H R+ . [17] 

Equations [12] – [17] are repeated at consecutive time steps corresponding to each discrete 

measurement, providing sequential, filtered estimates of the shaft displacement variables, their 

derivatives, and the rotordynamic coefficients. 

 

Though the EKF is relatively simple and computationally similar to the traditional linear 

Kalman filter, there are well-known drawbacks (Julier and Uhlmann, 1997). The filter is prone to 

divergence if the underlying dynamical system is significantly nonlinear over the discrete time 

step, and the error covariance is often estimated poorly, which degrades performance and can 

cause divergence. Some researchers, including Julier and Uhlmann (1997), have developed 

improved algorithms similar to the EKF that are not limited by these issues. 

 

ESTIMATING BEARING PROPERTIES IN A ROTOR–BEARING SYSTEM 

The EKF will be applied to estimate the rotordynamic properties of two bearings in the 

rotor–bearing system depicted in Fig. 2. The bearings are assumed to have identical properties, 

which reduces the number of parameters to be estimated from sixteen to eight. As mentioned 

earlier, the geometry and operating parameters of the rotor–bearing system are chosen to be 

representative of NASA’s rotordynamic simulator test rig and are listed in Table 1, and the 

assumed stiffness and damping properties of the bearings listed in Table 2 are thought to be 

realistic values for the chosen operating conditions. Shaft motion can be excited by the applied 
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imbalance at the shaft ends or by impact or by both. In any case, the applied imbalance and the 

impact force are assumed to be known. The EKF algorithm will be tested by numerical 

simulation in which the “experimental” data for the shaft motion is generated by numerically 

solving the equations of motion, Eq. [2], and then adding uncorrelated white noise with zero 

mean and 1.0 μm standard deviation to simulate measurement noise.  

 

The performance of the EKF filter is largely affected by the values of user-defined tuning 

parameters and the initial estimates of the state and error covariance matrix. The Q and R 

matrices model the process noise and measurement noise, respectively. More process noise 

indicates to the filter that a greater difference exists between the filter model and the real process. 

Likewise, larger values in R indicate the presence of more error in the measurements. In general, 

these quantities can vary with time, but in this analysis, they are assumed to be constant. Their 

values are set by the user, and they are generally used as tuning parameters, especially for the 

EKF. The filter performance is also a function of the initial estimates of the state and error 

covariance matrix. Larger initial values of the error covariance matrix represent a greater 

uncertainty in the initial state estimates. 

 

In this application, the values of the process and noise matrices were tuned by a trial and 

error procedure. The EKF filter was generally insensitive to the values of the process noise for 

the rotordynamic coefficients, Qr, so it was set to zero, i.e., Qr = 0. Also, the filter worked best 

for zero values of the process noise for the state variables, i.e., Qv = Qz = 0, which is expected 

since the experimental data was generated with a model that is identical to the filter model. The 

trial and error procedure indicated that values for the diagonal elements of R between 0.2 μm 
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and 2.0 μm produced acceptable results for the amount of measurement noise, so the diagonal 

elements of the measurement noise covariance matrix were set to R = diag [1.0 1.0 1.0 1.0] μm.  

 

The filter was much more sensitive to the initial estimates of the states and error 

covariance matrix than to Q and R. Initial estimates for the states were chosen to be 

  5 5 5 5
0ˆ 900 ,0,0,900 ,3 10 ,3 10 , 3 10 ,3 10

TN s N s N N N N
m m m m m m
⋅ ⋅⎧ ⎫= × × − ×⎨ ⎬

⎩ ⎭
r × ,  

and the initial error covariance matrix was set to be a diagonal matrix with elements of 

 ( )
2 2 2 2 2 2 2 2 2 2 2 2

6 6 6 6 11 11 11 11
0 2 2 2 2 2 2 2 2

ˆ 10 ,10 ,10 ,10 ,10 ,10 ,10 ,10N s N s N s N s N N N Ndiag
m m m m m m m m

⎧ ⎫⋅ ⋅ ⋅ ⋅
= ⎨ ⎬

⎩ ⎭
P . 

 

RESULTS 

In each of the simulations that follow, the motion is simulated for 0.125 s, or 

approximately 41.7 shaft revolutions, with a time step of 50 μs. The shaft originates from its 

equilibrium position with zero initial velocity. The first 30 ms of data made available for 

processing through the EKF is removed to eliminate the transients due to the initial conditions. 

 

For the first numerical simulation, the shaft motion was excited by both applied 

imbalance and impact. The imbalance is listed in Table 1, and the impact consisted of a constant 

force fy = –515 N acting at the shaft mass center (zp = 0), initiating at 40 ms and enduring for 50 

μs. Figure 4 plots the percent error between the estimated coefficients and the actual values as a 

function of the time step for one representative simulation. Within 30 ms, the estimates for all 

but the cross-coupled damping reached steady state, with errors less than 0.5% for the direct 
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damping and less than 5.5% for the stiffness terms. The errors for the cross-coupled damping 



varied much more significantly. This result is common among the parameter identification 

methods (De Santiago and San Andrés, 2007a and 2007b). In general, the EKF algorithm 

improves with better initial guesses, so it is possible to use the EKF iteratively, especially 

estimates do not reach steady state in one filtering pass. In such a case, the final estimates from 

one pass through the filter would be used as the initial guesses for the next pass. This process is 

repeated until eventually the change in the final estimates is below some tolerance. In the present

case, iteration did not improve the estimates significantly. 

 

if the 

 

Figure 5 shows a comparison between the orbit from a simulation using the estimated 

bearing as 

e. 

 

r 

able 3 lists the results of the EKF applied to twenty numerical simulations where the 

shaft w

on in 

 properties and the actual noisy orbit data. One may be tempted to use this comparison 

a check to verify the accuracy of the parameter estimates since the luxury of comparing the 

estimated bearing properties with the actual bearing properties will not generally be availabl

The logic is that a favorable orbit comparison indicates success of the identification scheme. In

this case, the orbits match very closely, apparently indicating that the parameter identification 

was successful. The problem, however, is that the quality of the orbit prediction is not closely 

tied to the accuracy of each system parameter individually. Data presented later will show rathe

close orbits predicted using bearing parameters that are significantly in error compared to the 

actual values.   

 

T

as excited by imbalance and impact. Considering the amount of noise in the data, the 

direct damping estimates were exceptional, the estimates of the four stiffness terms were 

reasonable, but the cross-coupled damping estimates showed significant error. The deviati
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the estimates (represented by the percent standard deviation relative to the actual parameter 

values) also followed the same trends. The cross-coupled damping estimates showed the larg

relative variance, which is comparable to other estimation methods (Tiwari et al., 2004, De 

Santiago and San Andrés, 2007b). 

 

est 

The results shown here indicate that the EKF is capable of estimating the rotordynamic 

coeffic  

 

er was 

e errors 

s in 

t 

u 

 as 

g 

ients when the shaft motion results from imbalance and impact excitation, but conditions

do not always exist where sufficient access to the shaft is available to deliver an impact to the 

shaft. In such cases, it would be advantageous to estimate the bearing properties with data from

imbalance excitation only, for it is more common to have knowledge of the shaft residual 

imbalance even if it is not possible to apply a known imbalance. In this effort, the EKF filt

applied to identify the bearing properties when the system was simulated with imbalance 

excitation only, and the errors in the EKF estimations are shown in Fig. 6. Even though th

in the direct stiffness estimates were reasonably small (less than 8%), the errors in the cross-

coupled stiffness estimates were considerably larger, ranging from 24% to 50%, and the error

the cross-coupled damping estimates were much worse (>100%). Even after significant effort to 

tune the user-definable parameters, the estimates from the EKF filter could not be materially 

improved. The conclusion is that the EKF filter cannot estimate the bearing properties withou

the impact excitation present. Some parameter identification methods (Lee and Hong, 1989; Tie

and Qiu, 1994; Tiwari et al., 2002; De Santiago and San Andrés, 2007b) are capable of 

estimating bearing properties using imbalance excitation only, though the results are not

accurate as when impact excitation data is used. It is possible that this particular rotor–bearin

problem exacerbates the inherent drawbacks with the EKF and that other Kalman filtering 
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methods that overcome these problems, such as the Unscented Kalman Filter developed by 

and Uhlmann (1997), may be more successful at identifying bearing parameters from imbalance 

response data. 

 

Julier 

It is interesting to compare the orbits computed from the (significantly incorrect!) 

estimat rbits 

 

ng 

t 

ONCLUSIONS 

escribes an Extended Kalman Filter (EKF) designed to identify stiffness and 

dampin

d 

ed parameters and the true, noisy experimental data. One may expect that the two o

would be noticeably different since the estimated parameters are significantly in error, but Fig. 7

shows that the two orbits are, instead, very close, as close as the orbits with the much more 

accurate bearing parameter estimates (see Fig. 5). Even though the EKF cannot accurately 

distinguish the bearing properties individually in this case, the filter still estimates the beari

parameters collectively in such a way that the net effect of the estimated bearing properties on 

the shaft orbit is similar to the true effect of the actual bearing properties. Consequently, it is no

advisable to use orbit comparison as a method to assess the quality of the parameter 

identification method. 

 

C

This paper d

g properties of two identical journal bearings from measurements of the shaft motion in a 

rotor–bearing system. The EKF successfully identified the rotordynamic bearing properties in 

numerical experiments when the shaft motion was excited by impact and imbalance, but it faile

when the shaft motion was excited solely by imbalance. The filter performance was influenced 

marginally by user-defined tuning parameters, Q and R, and more significantly by the initial 

values of the bearing parameters and error covariance matrix. Accuracy of the parameter 
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estimates was similar to other published bearing parameter identification methods. Estima

the direct damping and direct and cross-coupled stiffness values were considerably better than 

estimates for the cross-coupled damping values. Likewise, the relative variance in the cross-

coupled damping estimates over several simulations was considerably larger than the relative

variance in the direct damping and direct and cross-coupled stiffness estimates.  

 

tes for 

 

he paper also discusses the inadequacy of orbit comparison as a means to assess the 

quality

ing 
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NOMENCLATURE 
 
A  linearization of f about the current state estimate 
C system damping matrix 
cxx, cxy, cyx, cyy linearized bearing damping coefficients 
d1, d2 distance from the shaft center of mass to balance plane 1, 2 
f  nonlinear function representing the total system dynamics 
fbx, fby x, y direction bearing force 
fx, fy x, y direction impact force 
F0 total applied forces on the shaft 
g  nonlinear function representing the shaft dynamics 
G system gyroscopic matrix 
H output matrix 
I identity matrix 
It, Ip transverse, polar shaft mass moment of inertia 
kxx, kxy, kyx, kyy linearized bearing stiffness coefficients 
Kk Kalman gain matrix 
l1, l2 distance from the shaft center of mass to the centers of the bearings 
L length between the bearing centers 
M mass matrix 
m shaft mass 
m1, m2 total imbalance mass (residual and applied) at balance plane 1, 2 
P̂  continuous–time estimate of the error covariance matrix  
ˆ

kP  estimate of the error covariance matrix at time step k 

0P̂  initial estimate of the error covariance matrix 

kP  prediction of the error covariance matrix at time step k 
p1, p2 distance from the shaft center of mass to the displacement probes 
Qv, Qz, Qr covariance of the noise vectors corresponding to the shaft velocity, shaft 

displacement, and bearing properties 
Q covariance of the global system process noise vector 
R covariance of the measurement noise vector 
r1, r2 eccentricity of the imbalances at balance plane 1, 2 
r state vector of rotordynamic coefficients 

0r̂  initial estimates of the rotordynamic coefficients 
S system stiffness matrix 
s global state vector 
sk global state vector at time step k 
ŝ  continuous–time estimate of the global state vector 
ˆks  estimate of the global state vector at time step k 

0ŝ  initial estimate of the global state vector 

ks  prediction of the global state vector at time step k 
sv, sz state vector of velocity and displacement variables 
t time 
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tk time at time step k 
yk output measurement vector at time step k 
vk measurement noise vector at time step k 
wv, wz, wr noise vectors corresponding to the shaft velocity, shaft displacement, and bearing 

properties 
w  global system process noise vector 
x1, y1  x, y shaft displacement at the bearing center near the turbine disk 
x2 , y2 x, y shaft displacement at the bearing center near the thrust bearing plate 
x10, y10 equilibrium x, y coordinate of the shaft at the probe near the turbine disk 
x20, y20 equilibrium x, y coordinate of the shaft at the probe near the thrust bearing plate 
xp1, yp1 x, y shaft displacement at the probe near the turbine disk 
xp2, yp2 x, y shaft displacement at the probe near the thrust bearing plate 

, ,z z z  state vector of shaft displacement, velocity, and acceleration variables 
z0 initial value of the shaft displacement state vector 

0z  initial value of the shaft velocity state vector 
zp distance from the shaft center of mass to the location of impact excitation 
φ1, φ2 imbalance angle measured from the reference axis at balance plane 1, 2 
Ω shaft speed 
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TABLE AND FIGURE CAPTIONS 
 
Table 1. Parameters of the rotor–bearing system 
 
Table 2. Stiffness and damping properties assumed for the bearings 
 
Table 3. Average estimated rotordynamic coefficients from twenty simulations 
 
 
Figure 1. Cross section of a gas foil journal bearing 
 
Figure 2. Schematic of the rotor–bearing system 
 
Figure 3. Schematic of the NASA Glenn Research Center rotordynamic simulator test rig. 
 
Figure 4. Percent error in the estimated rotordynamic coefficients for a representative simulation. 
The shaft was excited by imbalance and impact. 
 
Figure 5. One full cycle of the orbit at the turbine end. Data shown includes the actual noisy 
“experimental” orbit and the orbit simulated with the rotordynamic properties estimated from the 
simulation with both imbalance and impact excitation. 
 
Figure 6. Percent error in the estimated rotordynamic coefficients. The shaft was excited by 
imbalance only. 
 
Figure 7. One full cycle of the orbit at the turbine end. Data shown includes the actual noisy 
“experimental” orbit and the orbit simulated with the rotordynamic properties estimated from the 
simulation with only imbalance excitation. 

21 
 
Identifying Bearing Rotordynamic Coefficients Using an Extended Kalman Filter, Miller, B. A. and Howard, S. A. 



Table 1. Parameters of the rotor–bearing system 
 

l1, l2 0.1245 m Ω 20000 RPM 

d1, d2 0.1661 m r1, r2 18.42 mm 

M 3.089 kg m1, m2  0.5 g 

Ip 2.629×10-3 kg·m2 φ1 0° 

It 2.483×10-2 kg·m2 φ2 90° 
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Table 2. Stiffness and damping properties assumed for the bearings 
 

kxx 500 kN/m cxx 1,100 N·s/m 

kxy 400 kN/m cxy 50 N·s /m 

kyx -350 kN/m Cyx -40 N·s /m 

kyy 600 kN/m cyy 1,200 N·s /m 
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Table 3. Average estimated rotordynamic coefficients from twenty simulations 
 

Parameter Unit Exact 
Value 

EKF 
estimate 

Standard 
Deviation

Percent 
Error 

Percent 
Standard 
Deviation

cxx N·s/m 1100 1095.0 9.2 -0.455 0.840 

cxy N·s/m 50    39.6 9.3 -20.8 18.6 

cyx N·s/m –40 –73.4 11.2 83.5 28.0 

cyy N·s/m 1200 1208.3 13.5 0.692 1.13 

kxx N/m 500,000 520,094 21,644 4.02 4.33 

kxy N/m 400,000 388,402 20,732 -2.90 5.18 

kyx N/m -350,000 -311,207 21,843 -11.1 7.28 

kyy N/m 600,000 533,420 21,110 -11.1 3.52 
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Figure 2. Schematic of the rotor–bearing system 
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Figure 3. Schematic of the NASA Glenn Research Center rotordynamic simulator test rig. 
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Figure 4. Percent error in the estimated rotordynamic coefficients for a representative 
simulation. The shaft was excited by imbalance and impact. 
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Figure 5. One full cycle of the orbit at the turbine end. Data shown includes the actual noisy 

“experimental” orbit and the orbit simulated with the rotordynamic properties estimated from the 
simulation with both imbalance and impact excitation. 
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Figure 6. Percent error in the estimated rotordynamic coefficients. The shaft was excited by 
imbalance only. 
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Figure 7. One full cycle of the orbit at the turbine end. Data shown includes the actual noisy 

“experimental” orbit and the orbit simulated with the rotordynamic properties estimated from the 
simulation with only imbalance excitation. 
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